organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Isopropyl 2-[2-(2,6-dichloroanilino)phenyl]acetate

Hamid Nawaz,^a M. Khawar Rauf,^b Masahiro Ebihara^b and Amin Badshah^a*

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan Correspondence e-mail: aminbadshah@yahoo.com

Received 29 October 2007; accepted 2 December 2007

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.093; data-to-parameter ratio = 17.9.

In the title compound, $C_{17}H_{17}Cl_2NO_2$, the NH group exhibits an intramolecular hydrogen bond to the carbonyl O atom and no intermolecular hydrogen bonding, in contrast with previous studies. The dihedral angle between the two benzene rings is $58.57(5)^{\circ}$. The ester group is planar, the greatest deviation from planarity being 0.0135 (11) Å for the ether O atom.

Related literature

For related literature, see: Abo-Ghalia et al. (1999); Alvarez-Larena et al. (1992); Corell et al. (1979); Evens (1979); Kass (1982); Lipka (1978, 1980); Moser et al. (1990); Robinson (1977); Scherrer & Whitehouse (1974).

Experimental

Crystal data

 $C_{17}H_{17}Cl_2NO_2$ $M_r = 338.22$ Monoclinic, $P2_1/c$ a = 17.548 (6) Å b = 9.443 (3) Å c = 9.719 (3) Å $\beta = 93.959 \ (4)^{\circ}$

$V = 1606.7 (9) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.41 \text{ mm}^{-1}$
T = 123 (2) K
$0.45 \times 0.25 \times 0.15$ mm

Data collection

Rigaku/MSC Mercury CCD	
diffractometer	
Absorption correction: none	
2744 measured reflections	

Refinement

F

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 1.10	refinement
3670 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

3670 independent reflections

 $R_{\rm int} = 0.061$

3428 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O1	0.90 (2)	2.05 (2)	2.859 (2)	149 (2)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative Program for Pre-doctoral Fellowships at Gifu University, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2110).

References

- Abo-Ghalia, M. H., Shalaby, A. M., El-Eraqi, W. I. & Awad, H. M. (1999). Amino Acids, 16, 425-440.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Alvarez-Larena, A., Piniella, J. F., Carrasco, E., Ginebreda, A., Julia, S. & Germain, G. (1992). J. Crystallogr. Spectrosc. Res. 22, 323-328.
- Corell, T., Jensen, K. M. & Splawinski, J. (1979). Acta Pharmacol. Toxicol. (Copenh.), 45, 232-239.
- Evens, R. P. (1979). Am. J. Hosp. Pharm. 36, 622-633.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kass, E. (1982). Voltaren: New Findings. pp. 14-30. Bern: Hans-Huber Verlag.

- Lipka, A. (1978). Z. Anorg. Allg. Chem. 440, 224-230. Lipka, A. (1980). Z. Anorg. Allg. Chem. 466, 195-202.
- Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358-2368.

- Robinson, R. (1977). Clinical Experience with the New Geigy Antirheumatic 'Voltaren'. Proceedings of 3rd Congress of the South-East Asia and Pacific Area League Against Rheumatism, Singapore, 1976. Bern: Hans-Huber Verlag.
- Scherrer, R. A. & Whitehouse, M. (1974). Anti-inflammatory Agents, Vol. 2. New York: Academic Press

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2008). E64, o334 [doi:10.1107/S1600536807065154]

Isopropyl 2-[2-(2,6-dichloroanilino)phenyl]acetate

H. Nawaz, M. Khawar Rauf, M. Ebihara and A. Badshah

Comment

The anti-phlogistic nonsteroidal anti-inflammatory drug (NSAID) (2-[(2,6-Dichlorophenyl)amino]-phenylacetic acid, common name diclofenac, is a potent *cyclo*-oxygenase inhibitor. It therapeutically interferes with the arachidonic acid cascade prior to the biosynthesis of the inflammatory prostaglandins. Consequently, the drug has a universal anti-phlogistic potency represented by generalized anti-inflammatory, anti-pyretic, anti-rheumatic and analgesic characteristics (Robinson, 1977; Kass, 1982; Evens, 1979; Scherrer & Whitehouse, 1974). However, several undesired side effects of the drug, particularly its ulcerogenicity, frequently restrict its remedial recommendation and it is contra-indicated for patients with a high risk of gastro-intestinal ulcers (Corell *et al.*, 1979). New non-proteinogenic amino acid conjugates of diclofenac have been synthesized and biologically screened for their anti-inflammatory, analgesic and ulcerogenic activity in rats (Abo-Ghalia *et al.*, 1999). We are interested in the synthesis of more potent, less ulcerogenic drugs that hopefully replace diclofenac, and present here the crystal structure of the title compound (I).

The bond lengths and angles in (I) are normal for this kind of molecule (Lipka, 1978, 1980; Moser *et al.*; 1990). The bond angles C(6)—N(1)—H(1) and C(7)—N(1)—H(1) are both 113.0 (1)°. The bond length N(1)—C(7) [1.418 (2) Å] is larger than N(1)—C(6) [1.393 (2) Å] suggesting a greater delocalization of the N lone pair toward the chlorinated ring. The bond lengths C(14)—O(1) [1.209 (2) Å] and C(14)—O(2) [1.333 (2) Å] indicate double and partial double bond character, respectively. The dihedral angle between the two benzene rings is 58.57 (5)°. The N(1)—H(1) is involved in intramolecular H-bonding to the carbonylic O(1) (Alvarez-Larena *et al.*; 1992).

Experimental

Diclofenac sodium (1.0 g, 3.1 mmol) and anhydrous potassium carbonate (1.0 g, 7.2 mmol) were added to dry acetone (30 ml) and the mixture was stirred for 20 min. Neat isopropyl iodide (0.785 ml, 7.83 mmol) in excess was then added and the resulting mixture was heated under reflux for 6 h. The reaction mixture was filtered when hot. The resultant cakes were washed with dry acetone 5×2 ml. The combined filtrate and washings were evaporated under reduced pressure to afford compound (I) as an oily material which solidified after 5 d at room temperature (70% yield). Melting point 363–366 K. Block-shaped single crystals were obtained by recrystallization from acetone.

Refinement

The H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with the C—H distance in the range 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level. The intramolecular hydrogen bond is shown by a dashed line.

Isopropyl 2-[2-(2,6-dichloroanilino)phenyl]acetate

Crystal data	
C ₁₇ H ₁₇ Cl ₂ NO ₂	$F_{000} = 704$
$M_r = 338.22$	$D_{\rm x} = 1.398 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 363 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
<i>a</i> = 17.548 (6) Å	Cell parameters from 4977 reflections
b = 9.443 (3) Å	$\theta = 3.0 - 27.5^{\circ}$
c = 9.719 (3) Å	$\mu = 0.41 \text{ mm}^{-1}$
$\beta = 93.959 \ (4)^{\circ}$	T = 123 (2) K
$V = 1606.7 (9) \text{ Å}^3$	Block, colorless
Z = 4	$0.45 \times 0.25 \times 0.15 \text{ mm}$

Data collection

Rigaku/MSC Mercury CCD diffractometer	3670 independent reflections
Radiation source: fine-focus sealed tube	3428 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
Detector resolution: 14.62 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 123(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -16 \rightarrow 22$
Absorption correction: none	$k = -12 \rightarrow 12$
12744 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 0.7365P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} = 0.002$

3670 reflections

205 parameters

 $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.32 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.20829 (8)	0.00238 (14)	0.81278 (14)	0.0176 (3)
H1	0.2551 (14)	-0.036 (2)	0.822 (2)	0.041 (6)*
C1	0.15347 (8)	-0.07425 (15)	0.87884 (15)	0.0150 (3)
C2	0.07450 (9)	-0.06102 (15)	0.84548 (15)	0.0152 (3)
C3	0.02096 (9)	-0.13894 (16)	0.91175 (16)	0.0178 (3)
H3	-0.0320	-0.1244	0.8893	0.021*
C4	0.04477 (9)	-0.23810 (16)	1.01071 (16)	0.0192 (3)
H4	0.0083	-0.2903	1.0577	0.023*
C5	0.12211 (9)	-0.26066 (17)	1.04063 (16)	0.0188 (3)
Н5	0.1390	-0.3313	1.1053	0.023*
C6	0.17464 (8)	-0.17985 (16)	0.97592 (15)	0.0158 (3)
Cl1	0.04071 (2)	0.05250 (4)	0.71474 (4)	0.01864 (11)
C12	0.27143 (2)	-0.21169 (4)	1.01691 (4)	0.02223 (11)
C7	0.20896 (8)	0.15202 (16)	0.80276 (15)	0.0163 (3)
C8	0.16317 (9)	0.23666 (17)	0.88131 (16)	0.0185 (3)
H8	0.1321	0.1938	0.9459	0.022*
C9	0.16256 (9)	0.38265 (17)	0.86589 (17)	0.0214 (3)
Н9	0.1306	0.4390	0.9189	0.026*
C10	0.20854 (10)	0.44656 (17)	0.77316 (17)	0.0233 (3)
H10	0.2079	0.5465	0.7616	0.028*
C11	0.25537 (9)	0.36304 (17)	0.69773 (16)	0.0214 (3)
H11	0.2874	0.4071	0.6355	0.026*
C12	0.25671 (9)	0.21573 (16)	0.71063 (15)	0.0172 (3)
C13	0.30776 (9)	0.12827 (18)	0.62396 (16)	0.0201 (3)
H13A	0.2779	0.0492	0.5806	0.024*
H13B	0.3262	0.1880	0.5494	0.024*
C14	0.37563 (9)	0.06929 (17)	0.71054 (17)	0.0211 (3)
01	0.37023 (7)	-0.01740 (15)	0.80056 (15)	0.0362 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O2	0.44207 (6)	0.12335 (12)	0.67675 (11)	0.0209 (2)
C15	0.51089 (9)	0.07400 (18)	0.75893 (17)	0.0225 (3)
H15	0.5055	-0.0287	0.7814	0.027*
C16	0.52004 (11)	0.1592 (2)	0.89044 (19)	0.0337 (4)
H16A	0.5287	0.2588	0.8681	0.051*
H16B	0.5638	0.1231	0.9482	0.051*
H16C	0.4736	0.1509	0.9404	0.051*
C17	0.57594 (10)	0.0941 (3)	0.6674 (2)	0.0390 (5)
H17A	0.5659	0.0396	0.5822	0.059*
H17B	0.6236	0.0611	0.7155	0.059*
H17C	0.5806	0.1948	0.6448	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0136 (6)	0.0152 (6)	0.0242 (7)	0.0011 (5)	0.0032 (5)	0.0029 (5)
C1	0.0168 (7)	0.0137 (7)	0.0148 (7)	-0.0001 (5)	0.0019 (5)	-0.0018 (5)
C2	0.0168 (7)	0.0130 (7)	0.0156 (7)	0.0017 (5)	-0.0004 (5)	-0.0017 (5)
C3	0.0141 (7)	0.0179 (7)	0.0213 (7)	-0.0011 (6)	0.0013 (6)	-0.0042 (6)
C4	0.0203 (8)	0.0180 (7)	0.0195 (7)	-0.0039 (6)	0.0039 (6)	-0.0009 (6)
C5	0.0234 (8)	0.0165 (7)	0.0163 (7)	0.0000 (6)	0.0005 (6)	0.0007 (6)
C6	0.0134 (7)	0.0171 (7)	0.0165 (7)	0.0015 (6)	-0.0016 (5)	-0.0023 (6)
Cl1	0.01741 (19)	0.01788 (18)	0.02003 (19)	0.00138 (13)	-0.00299 (13)	0.00181 (13)
Cl2	0.01558 (19)	0.0220 (2)	0.0285 (2)	0.00267 (14)	-0.00263 (14)	0.00416 (15)
C7	0.0132 (7)	0.0175 (7)	0.0174 (7)	-0.0012 (6)	-0.0041 (5)	0.0022 (6)
C8	0.0158 (7)	0.0205 (7)	0.0189 (7)	-0.0024 (6)	-0.0016 (6)	-0.0004 (6)
C9	0.0195 (8)	0.0204 (7)	0.0235 (8)	0.0015 (6)	-0.0052 (6)	-0.0043 (6)
C10	0.0270 (9)	0.0158 (7)	0.0258 (8)	-0.0025 (6)	-0.0069 (7)	0.0021 (6)
C11	0.0211 (8)	0.0218 (8)	0.0207 (8)	-0.0054 (6)	-0.0043 (6)	0.0053 (6)
C12	0.0135 (7)	0.0219 (8)	0.0157 (7)	-0.0011 (6)	-0.0034 (5)	0.0022 (6)
C13	0.0151 (7)	0.0260 (8)	0.0191 (7)	-0.0005 (6)	0.0013 (6)	0.0042 (6)
C14	0.0158 (7)	0.0252 (8)	0.0224 (8)	-0.0001 (6)	0.0022 (6)	0.0021 (6)
01	0.0168 (6)	0.0452 (8)	0.0467 (8)	0.0018 (6)	0.0022 (5)	0.0264 (7)
02	0.0131 (5)	0.0285 (6)	0.0207 (6)	-0.0007 (4)	-0.0005 (4)	0.0053 (5)
C15	0.0133 (8)	0.0284 (8)	0.0252 (8)	0.0000 (6)	-0.0037 (6)	0.0064 (7)
C16	0.0332 (10)	0.0355 (10)	0.0307 (10)	-0.0012 (8)	-0.0100 (8)	0.0013 (8)
C17	0.0145 (8)	0.0663 (14)	0.0363 (10)	0.0045 (9)	0.0022 (7)	0.0140 (10)

Geometric parameters (Å, °)

N1—C1	1.3952 (19)	C10-C11	1.385 (2)
N1—C7	1.416 (2)	С10—Н10	0.9500
N1—H1	0.90 (2)	C11—C12	1.397 (2)
C1—C6	1.405 (2)	C11—H11	0.9500
C1—C2	1.407 (2)	C12—C13	1.516 (2)
C2—C3	1.387 (2)	C13—C14	1.516 (2)
C2—Cl1	1.7354 (15)	C13—H13A	0.9900
C3—C4	1.386 (2)	С13—Н13В	0.9900
С3—Н3	0.9500	C14—O1	1.207 (2)

C4—H4 09500 02—C15 1.4766 (19) CS—C6 1.381 (2) C15—C17 1.507 (2) C5—H5 09500 C15—C16 1.509 (3) CG—C12 1.738 (16) C15—H15 1.0000 C7—C23 1.397 (2) C16—H16A 0.9800 C3—C5 1.387 (2) C16—H16B 0.9800 C3—C12 1.403 (2) C16—H16B 0.9800 C3—C13 1.387 (2) C16—H16B 0.9800 C3—C10 1.388 (2) C17—H17A 0.9800 C3—C10 1.388 (2) C17—H17B 0.9800 C1—N1—C7 123.94 (13) C10—C11—H11 119.1 C1—N1—H1 113.5 (15) C12—C11—H11 119.1 C1—C1—C2 123.19 (14) C11—C12—C13 119.89 (14) N1=C1—C2 123.19 (14) C11—C12—C13 119.89 (14) C3=C2=C11 123.63 (13) C14—C13—H13A 109.4 C3=C2=C11 123.63 (13) C14—C13—H13B 109.4 C3=C2=C11 123.63 (13)	C4—C5	1.385 (2)	C14—O2	1.3344 (19)
CS-C6 1.381 (2) C15-C17 1.507 (2) CS-H5 0.9500 C15-C16 1.509 (3) CG-C12 1.7438 (16) C15-H15 1.0000 C7-C8 1.397 (2) C16-H16A 0.9800 C7-C12 1.403 (2) C16-H16C 0.9800 C8-C9 1.387 (2) C16-H16C 0.9800 C9-H9 0.9500 C17-H17B 0.9800 C9-H9 0.9500 C17-H17C 0.9800 C1-N1-C7 123.94 (13) C10-C11-H11 119.1 C1-N1-C7 123.94 (13) C10-C11-H11 119.1 C1-N1-C6 121.23 (14) C11-C2-C13 119.98 (14) N1-C1-C6 121.23 (14) C11-C2-C13 129.89 (14) N1-C1-C2 123.19 (14) C14-C13-H13A 109.4 C3-C2-C1 122.29 (14) C14-C13-H13A 109.4 C3-C2-C1 123.93 (11) C14-C13-H13B 109.4 C4-C3-H3 120.0 01-C14-C13 123.62 (15) C5-C4-C1 119.59 (14) <	C4—H4	0.9500	O2—C15	1.4766 (19)
CS-H5 0.9500 C1S-C16 1.509(3) C6-C12 1.7438(16) C1S-H15 1.0000 C7-C8 1.397(2) C16-H16A 0.9800 C7-C12 1.403(2) C16-H16B 0.9800 C8-C9 1.387(2) C16-H16C 0.9800 C9-C10 1.388(2) C17-H17A 0.9800 C9-H9 0.9500 C17-H17C 0.9800 C9-H9 0.9500 C17-H17C 0.9800 C1-NI-C7 123.94(13) C10-C11-H11 119.1 C1-NI-C7 123.94(13) C10-C11-H11 119.1 C1-NI-C2 123.19(14) C7-C12-C13 119.98(14) N1-C1-C2 123.19(14) C7-C12-C13 119.98(14) C3-C2-C1 122.29(14) C14-C13-H13A 109.4 C4-C3-C2 119.99(14) C12-C13-H13A 109.4 C4-C3-C3 119.99(14) C12-C13-H13B 109.4 C4-C3-H3 120.0 H13A-C13-H13B 108.0 C2-C3-H3 120.2 C2-C14-C13	C5—C6	1.381 (2)	C15—C17	1.507 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.9500	C15—C16	1.509 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—Cl2	1.7438 (16)	С15—Н15	1.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8	1.397 (2)	С16—Н16А	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C12	1.403 (2)	С16—Н16В	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С9	1.387 (2)	С16—Н16С	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—Н8	0.9500	С17—Н17А	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10	1.388 (2)	С17—Н17В	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—Н9	0.9500	C17—H17C	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C7	123.94 (13)	C10—C11—H11	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—H1	113.5 (15)	C12—C11—H11	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—H1	113.6 (15)	C11—C12—C7	118.50 (14)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C6	121.23 (14)	C11—C12—C13	119.98 (14)
C6-C1-C2 115.36 (13) C14-C13-C12 111.31 (13) C3-C2-C1 122.29 (14) C14-C13-H13A 109.4 C3-C2-C11 117.36 (12) C12-C13-H13A 109.4 C1-C2-C11 120.33 (11) C14-C13-H13B 109.4 C4-C3-C2 119.96 (14) C12-C13-H13B 109.4 C4-C3-H3 120.0 H13A-C13-H13B 108.0 C2-C3-H3 120.0 O1-C14-O2 123.47 (15) C5-C4-C3 119.59 (14) O1-C14-C13 123.62 (15) C5-C4-H4 120.2 O2-C14-C13 112.90 (13) C3-C4-H4 120.2 O2-C15 116.23 (12) C6-C5-C4 119.65 (14) O2-C15-C16 108.97 (14) C4-C3-H5 120.2 C17-C15-C16 108.97 (14) C4-C5-H5 120.2 C17-C15-H15 109.8 C5-C6-C1 122.97 (14) O2-C15-H15 109.8 C5-C6-C12 118.94 (12) C16-C15-H15 109.8 C8-C7-N1 121.69 (14) C15-C16-H16A 109.5 C7-C8-H8 119.7 H16A-C16-H16B 109.5 C12-C7-	N1—C1—C2	123.19 (14)	C7—C12—C13	121.51 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2	115.36 (13)	C14—C13—C12	111.31 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	122.29 (14)	C14—C13—H13A	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—Cl1	117.36 (12)	C12—C13—H13A	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—Cl1	120.33 (11)	C14—C13—H13B	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C3-C2	119.96 (14)	C12—C13—H13B	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	120.0	H13A—C13—H13B	108.0
C5-C4-C3119.59 (14)O1-C14-C13123.62 (15)C5-C4-H4120.2O2-C14-C13112.90 (13)C3-C4-H4120.2C14-O2-C15116.23 (12)C6-C5-C4119.65 (14)O2-C15-C17105.38 (14)C6-C5-H5120.2O2-C15-C16108.97 (14)C4-C5-H5120.2C17-C15-C16113.10 (16)C5-C6-C1122.97 (14)O2-C15-H15109.8C5-C6-C12118.09 (12)C17-C15-H15109.8C5-C6-C12118.94 (12)C16-C15-H15109.8C1-C6-C12119.65 (14)C15-C16-H16A109.5C8-C7-C12119.65 (14)C15-C16-H16B109.5C8-C7-N1121.69 (14)C15-C16-H16B109.5C9-C8-C7120.67 (15)C15-C16-H16B109.5C9-C8-H8119.7H16A-C16-H16C109.5C8-C9-C10120.12 (15)C15-C17-H17A109.5C8-C9-H9119.9C15-C17-H17B109.5C1-C10-C9119.25 (15)C15-C17-H17B109.5C10-C9-H9119.9H17A-C17-H17B109.5C10-C10-H10120.4H17B-C17-H17C109.5C10-C10-H10120.4H17B-C17-H17C109.5C10-C10-H10120.4H17A-C17-H17C109.5C10-C11-C12121.78 (15)C15-C10-C11-0.7 (2)C7-N1-C1-C255.1 (2)C7-C8-C9-C10-0.9 (2)N1-C1-C2-C3179.53 (14)C8-C9-C10-C11-0.7 (2)	С2—С3—Н3	120.0	O1—C14—O2	123.47 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	119.59 (14)	O1—C14—C13	123.62 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	120.2	O2-C14-C13	112.90 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4	120.2	C14—O2—C15	116.23 (12)
C6—C5—H5120.2 $O2_C15_C16$ 108.97 (14)C4—C5—H5120.2C17_C15_C16113.10 (16)C5_C6_C1122.97 (14) $O2_C15_H15$ 109.8C5_C6_C12118.09 (12)C17_C15_H15109.8C1_C6_C12118.94 (12)C16_C15_H15109.8C8_C7_C12119.65 (14)C15_C16_H16A109.5C8_C7_N1121.69 (14)C15_C16_H16B109.5C9_C8_C7120.67 (15)C15_C16_H16C109.5C9_C8_H8119.7H16A_C16_H16C109.5C7_C8_H8119.7H16B_C16_H16C109.5C8_C9_C10120.12 (15)C15_C17_H17A109.5C11_C10_C9119.25 (15)C15_C17_H17B109.5C11_C10_H10120.4H17A_C17_H17C109.5C11_C10_H10120.4H17A_C17_H17C109.5C11_C11_C12121.78 (15)C15_C17_H17C109.5C11_C12_C2_S5.1 (2)C7_C8_C9_C10-0.9 (2)N1_C1_C2_C3179.53 (14)C8_C9_C10_C11-0.7 (2)	C6—C5—C4	119.65 (14)	02	105.38 (14)
C4—C5—H5120.2C17—C15—C16113.10 (16)C5—C6—C1122.97 (14)O2—C15—H15109.8C5—C6—C12118.09 (12)C17—C15—H15109.8C1—C6—C12118.94 (12)C16—C15—H15109.8C8—C7—C12119.65 (14)C15—C16—H16A109.5C8—C7—N1121.69 (14)C15—C16—H16B109.5C12—C7—N1118.66 (14)H16A—C16—H16B109.5C9—C8—C7120.67 (15)C15—C16—H16C109.5C9—C8—H8119.7H16A—C16—H16C109.5C7—C8—H8119.7H16B—C16—H16C109.5C8—C9—C10120.12 (15)C15—C17—H17A109.5C10—C9—H9119.9C15—C17—H17B109.5C11—C10—C9119.25 (15)C15—C17—H17C109.5C11—C10—H10120.4H17A—C17—H17C109.5C10—C11—C12121.78 (15)C7—C8—C9 -177.48 (14)C7—N1—C1—C6 -130.59 (16)N1—C7—C8—C9 -177.48 (14)C7—N1—C1—C255.1 (2)C7—C8—C9—C10 -0.9 (2)N1—C1—C2—C3179.53 (14)C8—C9—C10—C11 -0.7 (2)	C6—C5—H5	120.2	O2—C15—C16	108.97 (14)
C5—C6—C1122.97 (14)O2—C15—H15109.8C5—C6—C12118.09 (12)C17—C15—H15109.8C1—C6—C12118.94 (12)C16—C15—H15109.8C8—C7—C12119.65 (14)C15—C16—H16A109.5C8—C7—N1121.69 (14)C15—C16—H16B109.5C9—C8—C7120.67 (15)C15—C16—H16B109.5C9—C8—H8119.7H16A—C16—H16C109.5C7—C8—H8119.7H16B—C16—H16C109.5C8—C9—C10120.12 (15)C15—C17—H17A109.5C8—C9—H9119.9C15—C17—H17B109.5C11—C10—C9119.25 (15)C15—C17—H17B109.5C11—C10—H10120.4H17A—C17—H17C109.5C10—C11—C12121.78 (15)C15—C17—H17C109.5C7—N1—C1—C6-130.59 (16)N1—C7—C8—C9-177.48 (14)C7—N1—C1—C255.1 (2)C7—C8—C9—C10-0.9 (2)N1—C1—C2—C3179.53 (14)C8—C9—C10—C11 $-0.7 (2)$	С4—С5—Н5	120.2	C17—C15—C16	113.10 (16)
C5—C6—Cl2118.09 (12)C17—C15—H15109.8C1—C6—Cl2118.94 (12)C16—C15—H15109.8C8—C7—Cl2119.65 (14)C15—C16—H16A109.5C8—C7—N1121.69 (14)C15—C16—H16B109.5C12—C7—N1118.66 (14)H16A—C16—H16B109.5C9—C8—C7120.67 (15)C15—C16—H16C109.5C7—C8—H8119.7H16A—C16—H16C109.5C8—C9—C10120.12 (15)C15—C17—H17A109.5C8—C9—H9119.9C15—C17—H17B109.5C11—C10—C9119.25 (15)C15—C17—H17B109.5C11—C10—H10120.4H17A—C17—H17C109.5C10—C11—C12121.78 (15)C15—C17—H17C109.5C7—N1—C1—C6-130.59 (16)N1—C7—C8—C9-177.48 (14)C7—N1—C1—C255.1 (2)C7—C8—C9—C10-0.9 (2)N1—C1—C2—C3179.53 (14)C8—C9—C10—C11-0.7 (2)	C5—C6—C1	122.97 (14)	O2—C15—H15	109.8
C1—C6—Cl2 118.94 (12) $C16$ —C15—H15 109.8 C8—C7—Cl2 119.65 (14) $C15$ —Cl6—H16A 109.5 C8—C7—N1 121.69 (14) $C15$ —Cl6—H16B 109.5 C12—C7—N1 118.66 (14)H16A—Cl6—H16B 109.5 C9—C8—C7 120.67 (15) $C15$ —Cl6—H16C 109.5 C9—C8—H8 119.7 H16A—Cl6—H16C 109.5 C7—C8—H8 119.7 H16B—Cl6—H16C 109.5 C8—C9—C10 120.12 (15) $C15$ —C17—H17A 109.5 C8—C9—H9 119.9 $C15$ —C17—H17B 109.5 C10—C9—H9 119.25 (15) $C15$ —C17—H17B 109.5 C11—C10—C9 119.25 (15) $C15$ —C17—H17C 109.5 C10—C11—C12 120.4 H17A—C17—H17C 109.5 C10—C11—C12 121.78 (15) $C15$ —C17—H17C 109.5 C7—N1—C1—C6 -130.59 (16)N1—C7—C8—C9 -177.48 (14)C7—N1—C1—C2 55.1 (2) $C7$ —C8—C9—C10 -0.9 (2)N1—C1—C2—C3 179.53 (14) $C8$ —C9—C10—C11 -0.7 (2)	C5—C6—Cl2	118.09 (12)	C17—C15—H15	109.8
C8—C7—C12119.65 (14)C15—C16—H16A109.5C8—C7—N1121.69 (14)C15—C16—H16B109.5C12—C7—N1118.66 (14)H16A—C16—H16B109.5C9—C8—C7120.67 (15)C15—C16—H16C109.5C9—C8—H8119.7H16A—C16—H16C109.5C7—C8—H8119.7H16B—C16—H16C109.5C8—C9—C10120.12 (15)C15—C17—H17A109.5C8—C9—H9119.9C15—C17—H17B109.5C10—C9—H9119.9H17A—C17—H17B109.5C11—C10—C9120.4H17A—C17—H17C109.5C9—C10—H10120.4H17B—C17—H17C109.5C10—C11—C12121.78 (15)C15—C17—C8—C9-177.48 (14)C7—N1—C1—C255.1 (2)C7—C8—C9—C10-0.9 (2)N1—C1—C2—C3179.53 (14)C8—C9—C10—C11 -0.7 (2)	C1—C6—Cl2	118.94 (12)	С16—С15—Н15	109.8
C8—C7—N1121.69 (14)C15—C16—H16B109.5C12—C7—N1118.66 (14)H16A—C16—H16B109.5C9—C8—C7120.67 (15)C15—C16—H16C109.5C9—C8—H8119.7H16A—C16—H16C109.5C7—C8—H8119.7H16B—C16—H16C109.5C8—C9—C10120.12 (15)C15—C17—H17A109.5C8—C9—H9119.9C15—C17—H17B109.5C10—C9—H9119.9H17A—C17—H17B109.5C11—C10—C9119.25 (15)C15—C17—H17C109.5C11—C10—H10120.4H17A—C17—H17C109.5C10—C11—C12121.78 (15)C17—C17—C8—C9-177.48 (14)C7—N1—C1—C255.1 (2)C7—C8—C9—C10-0.9 (2)N1—C1—C2—C3179.53 (14)C8—C9—C10—C11-0.7 (2)	C8—C7—C12	119.65 (14)	С15—С16—Н16А	109.5
C12-C7-N1118.66 (14)H16A-C16-H16B109.5C9-C8-C7120.67 (15)C15-C16-H16C109.5C9-C8-H8119.7H16A-C16-H16C109.5C7-C8-H8119.7H16B-C16-H16C109.5C8-C9-C10120.12 (15)C15-C17-H17A109.5C8-C9-H9119.9C15-C17-H17B109.5C10-C9-H9119.9H17A-C17-H17B109.5C11-C10-C9119.25 (15)C15-C17-H17C109.5C11-C10-H10120.4H17A-C17-H17C109.5C10-C11-C12121.78 (15)C17-C8-C9-177.48 (14)C7-N1-C1-C255.1 (2)C7-C8-C9-C10-0.9 (2)N1-C1-C2-C3179.53 (14)C8-C9-C10-C11-0.7 (2)	C8—C7—N1	121.69 (14)	С15—С16—Н16В	109.5
C9-C8-C7120.67 (15)C15-C16-H16C109.5C9-C8-H8119.7H16A-C16-H16C109.5C7-C8-H8119.7H16B-C16-H16C109.5C8-C9-C10120.12 (15)C15-C17-H17A109.5C8-C9-H9119.9C15-C17-H17B109.5C10-C9-H9119.9H17A-C17-H17B109.5C11-C10-C9119.25 (15)C15-C17-H17C109.5C11-C10-H10120.4H17A-C17-H17C109.5C10-C11-C12121.78 (15)C17-C8-C9-177.48 (14)C7-N1-C1-C255.1 (2)C7-C8-C9-C10-0.9 (2)N1-C1-C2-C3179.53 (14)C8-C9-C10-C11-0.7 (2)	C12—C7—N1	118.66 (14)	H16A—C16—H16B	109.5
C9-C8-H8119.7H16A-C16-H16C109.5C7-C8-H8119.7H16B-C16-H16C109.5C8-C9-C10120.12 (15)C15-C17-H17A109.5C8-C9-H9119.9C15-C17-H17B109.5C10-C9-H9119.9H17A-C17-H17B109.5C11-C10-C9119.25 (15)C15-C17-H17C109.5C11-C10-H10120.4H17A-C17-H17C109.5C10-C11-C12121.78 (15)C17-C17-H17C109.5C10-C11-C255.1 (2)C7-C8-C9-177.48 (14)C7-N1-C1-C255.1 (2)C7-C8-C9-C10-0.9 (2)N1-C1-C2-C3179.53 (14)C8-C9-C10-C11-0.7 (2)	C9—C8—C7	120.67 (15)	C15—C16—H16C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—С8—Н8	119.7	H16A—C16—H16C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8	119.7	H16B—C16—H16C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10	120.12 (15)	C15—C17—H17A	109.5
C10—C9—H9 119.9 H17A—C17—H17B 109.5 C11—C10—C9 119.25 (15) C15—C17—H17C 109.5 C11—C10—H10 120.4 H17A—C17—H17C 109.5 C9—C10—H10 120.4 H17B—C17—H17C 109.5 C10—C11—C12 121.78 (15) C7—N1—C1—C6 -130.59 (16) N1—C7—C8—C9 -177.48 (14) C7—N1—C1—C2 55.1 (2) C7—C8—C9—C10 -0.9 (2) N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	С8—С9—Н9	119.9	C15—C17—H17B	109.5
C11—C10—C9 119.25 (15) C15—C17—H17C 109.5 C11—C10—H10 120.4 H17A—C17—H17C 109.5 C9—C10—H10 120.4 H17B—C17—H17C 109.5 C10—C11—C12 121.78 (15) C7—N1—C1—C6 -130.59 (16) N1—C7—C8—C9 -177.48 (14) C7—N1—C1—C2 55.1 (2) C7—C8—C9—C10 -0.9 (2) N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	С10—С9—Н9	119.9	H17A—C17—H17B	109.5
C11—C10—H10 120.4 H17A—C17—H17C 109.5 C9—C10—H10 120.4 H17B—C17—H17C 109.5 C10—C11—C12 121.78 (15) 109.5 C7—N1—C1—C6 -130.59 (16) N1—C7—C8—C9 -177.48 (14) C7—N1—C1—C2 55.1 (2) C7—C8—C9—C10 -0.9 (2) N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	C11—C10—C9	119.25 (15)	C15—C17—H17C	109.5
C9—C10—H10 120.4 H17B—C17—H17C 109.5 C10—C11—C12 121.78 (15) -130.59 (16) N1—C7—C8—C9 -177.48 (14) C7—N1—C1—C2 55.1 (2) C7—C8—C9—C10 -0.9 (2) N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	C11—C10—H10	120.4	H17A—C17—H17C	109.5
C10—C11—C12 121.78 (15) C7—N1—C1—C6 -130.59 (16) N1—C7—C8—C9 -177.48 (14) C7—N1—C1—C2 55.1 (2) C7—C8—C9—C10 -0.9 (2) N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	C9—C10—H10	120.4	H17B—C17—H17C	109.5
C7-N1-C1-C6 -130.59 (16) N1-C7-C8-C9 -177.48 (14) C7-N1-C1-C2 55.1 (2) C7-C8-C9-C10 -0.9 (2) N1-C1-C2-C3 179.53 (14) C8-C9-C10-C11 -0.7 (2)	C10-C11-C12	121.78 (15)		
C7-N1-C1-C2 55.1 (2) C7-C8-C9-C10 -0.9 (2) N1-C1-C2-C3 179.53 (14) C8-C9-C10-C11 -0.7 (2)	C7—N1—C1—C6	-130.59 (16)	N1—C7—C8—C9	-177.48 (14)
N1—C1—C2—C3 179.53 (14) C8—C9—C10—C11 -0.7 (2)	C7—N1—C1—C2	55.1 (2)	C7—C8—C9—C10	-0.9 (2)
	N1—C1—C2—C3	179.53 (14)	C8—C9—C10—C11	-0.7 (2)

supplementary materials

C6-C1-C2-C3	4.9 (2)	C9—C10—C11—C12	1.1 (2)
NICIC2CII C6C1C2CII	1.1 (2) -173.52 (11)	C10-C11-C12-C7 C10-C11-C12-C13	0.1 (2) 178.82 (14)
C1—C2—C3—C4	-2.7 (2)	C8—C7—C12—C11	-1.7 (2)
Cl1—C2—C3—C4	175.78 (12)	N1—C7—C12—C11	177.93 (13)
$C_2 = C_3 = C_4 = C_5$	-1.3(2)	C8 - C7 - C12 - C13	-0.8(2)
C4—C5—C6—C1	-0.3(2)	C11—C12—C13—C14	107.44 (16)
C4—C5—C6—Cl2	179.91 (12)	C7—C12—C13—C14	-73.86 (18)
N1-C1-C6-C5	-178.14 (14)	C12—C13—C14—O1	66.2 (2)
C2—C1—C6—C5	-3.4 (2)	C12-C13-C14-O2	-113.82 (15)
N1—C1—C6—Cl2	1.62 (19)	O1-C14-O2-C15	-1.5 (2)
C2-C1-C6-Cl2	176.35 (11)	C13—C14—O2—C15	178.45 (13)
C1—N1—C7—C8	12.6 (2)	C14—O2—C15—C17	155.43 (15)
C1—N1—C7—C12	-166.97 (14)	C14—O2—C15—C16	-82.92 (17)
C12—C7—C8—C9	2.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1…O1	0.90 (2)	2.05 (2)	2.859 (2)	149 (2)

